
GraphChi

Steven Krieg
1

Background & Big Idea
● Carnegie Mellon, 2012
● “Large-Scale Graph Computation on Just a PC”

How do we process graphs that exceed available
memory?

2

3

The Solution:
Secondary Storage

Graphs are divided into groups of
vertices (intervals) and edges
(shards).

Intervals are loaded one at a time
into memory for processing.

Interval: a group of
vertices that will be

updated in the same
execution step

Shard: list of edges
whose destination

vertex is in the interval

1:1 relationship

“Parallel Sliding Windows”

4

“Parallel Sliding Windows”

5

A Specific Purpose

Key performance metric: size (not time).

Use case: large-scale computation (look elsewhere for
traversals or queries)

6

7

Graph Expression

Graphs are divided into groups of
vertices (intervals) and edges
(shards), which are processed as
subgraphs.

Programmer can specify interval
size, or default is ¼ available
memory.

Interval: a group of
vertices that will be

updated in the same
execution step

Shard: list of edges
whose destination

vertex is in the interval

1:1 relationship

Graph Primitives

Weighted, directed graphs.

(You could in theory use unweighted or undirected
graphs, but I’m guessing there are better frameworks
for those)

8

Preprocessing
1. Divide vertices into intervals such that there is an

approximately uniform in-degree distribution
2. Write each edge to a scratch file (shards)
3. Pass through each shard file and order edges
4. Compute a binary “degree file” with in- and

out-degrees of each vertex

Can read from several standard graph formats.

9

Execution Model

10

How to Use (C++)
1. Extend GraphChiProgram class & template

functions
2. Define parameters (memory budget, edge/vertex

types, number of iterations, etc.)
3. Instantiate custom object and pass it to a

graphchi_engine object

11

Sample Functions

before_iteration(int iteration, graphchi_context &gcontext)

after_iteration(int iteration, graphchi_context &gcontext)

before_exec_interval(vid_t window_st, vid_t window_en, graphchi_context &gcontext)

after_exec_interval(vid_t window_st, vid_t window_en, graphchi_context &gcontext)

update(vertex_t &v, graphchi_context &gcontext)

12

Example (Pagerank)
struct PagerankProgram : public GraphChiProgram<VertexDataType, EdgeDataType> {
…
void update(graphchi_vertex<VertexDataType, EdgeDataType> &v, graphchi_context &ginfo) {

…

 /* Compute the sum of neighbors' weighted pageranks by

 reading from the in-edges. */

 for(int i=0; i < v.num_inedges(); i++) {

 float val = v.inedge(i)->get_data();

 sum += val;

 }

 /* Compute my pagerank */

 float pagerank = RANDOMRESETPROB + (1 - RANDOMRESETPROB) * sum;

13

Example (Pagerank cont’d)
…

/* Write my pagerank divided by the number of out-edges to

 each of my out-edges. */

 if (v.num_outedges() > 0) {

 float pagerankcont = pagerank / v.num_outedges();

 for(int i=0; i < v.num_outedges(); i++) {

 graphchi_edge<float> * edge = v.outedge(i);

 edge->set_data(pagerankcont);

 }

 }

14

Performance

15

Further Resources
[1] Aapo Kyrola, Guy E. Blelloch, & Carlos Guestrin. (2018). GraphChi:
Large-Scale Graph Computation on Just a PC.
[2] https://github.com/GraphChi
[3] Moon, Seunghyeon, Lee, Jae-Gil, Kang, Minseo, Choy, Minsoo, & Lee,
Jin-Woo. (2016). Parallel community detection on large graphs with
MapReduce and GraphChi. Data & Knowledge Engineering, 104, 17-31.
[5] Lu, J., & Thomo, A. (2016). An experimental evaluation of giraph and
GraphChi. Advances in Social Networks Analysis and Mining (ASONAM), 2016
IEEE/ACM International Conference on, 993-996.

16

https://github.com/GraphChi

